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DNA Lesions, Inducible DNA Repair, and Cell
Division: Three Key Factors in Mutagenesis

and Carcinogenesis

by Bruce N. Ames,' Mark K. Shigenaga,' and
Lois Swirsky Gold?

DNA lesions that escape repair have a certain probability of giving rise to mutations when
the cell divides. Endogenous DNA damage is high: 10° oxidative lesions are present per rat cell.
An exogenous mutagen produces an increment in lesions over the background rate of endoge-
nous lesions. The effectiveness of a particular lesion depends on whether it is excised by a DNA
repair system and the probability that it gives rise to a mutation when the cell divides. When
the cell divides, an unrepaired DNA lesion has a certain probability of giving rise to a mutation.
Thus, an important factor in the mutagenic effect of an exogenous agent whether it is genotoxic
or non-genotoxic, is the increment it causes over the background cell division rate (mitogene-
sis) in cells that appear to matter most in cancer, the stem cells, which are not on their way to
being discarded. Increasing their cell division rate increases mutation and therefore cancer.
There is little cancer from nondividing cells. Endogenous cell division rates can be influenced
by hormone levels, decreased by calorie restriction, or increased by high doses of chemicals. If
both the rate of DNA lesions and cell division are increased, then there will be a multiplicative
effect on mutagenesis (and carcinogenesis), for example, by high doses of a mutagen that also
increases mitogenesis through cell killing. The defense system against reactive electrophilic
mutagens, such as the glutathione transferases, are also almost all inducible and buffer cells
against increments in active forms of chemicals that can cause DNA lesions. A variety of DNA
repair defense systems, almost all inducible, buffer the cell against any increment in DNA
lesions. Therefore, the effect of a particular chemical insult depends on the level of each
defense, which in turn depends on the past history of exposure. Exogenous agents can influence
the induction and effectiveness of these defenses. Defenses can be partially disabled by lack of

particular micronutrients in the diet (e.g., antioxidants).

Endogenous DNA Damage and
Mutagenesis

Endogenous rates of DNA damage are enormous.
Mutagens are often thought to be only exogenous
agents, but endogenous mutagens cause extensive
DNA damage (oxidative and other lesions), some of
which is converted to mutations during cell division.

Division of Biochemistry and Molecular Biology, 401 Barker Hall,
University of California, Berkeley, CA 94720,

?Life Sciences Division, Lawrence Berkeley Laboratory, Ber-
keley, CA 94720.

Address reprint requests to B.N. Ames, Division of Biochemistry
and Molecular Biology, 401 Barker Hall, University of California,
Berkeley, CA 94720.

This paper was presented at the Symposium on Cell Proliferation
and Chemical Carcinogenesis that was held January 14-16, 1992, in
Research Triangle Park, NC.

Four endogenous processes leading to significant DNA
damage are oxidation (7-3), methylation, deamination,
and depurination (2). The importance of these process-
es is supported by the existence of specific DNA repair
glycosylases for oxidative, methylated, and deaminat-
ed adducts and a repair system for apurinic sites that
are produced by spontaneous depurination (3).

DNA damage produced by oxidation appears to be
the most significant endogenous damage (4). We esti-
mate that the DNA hits per cell per day from endoge-
nous oxidants are normally 10° in the rat and 104 in the
human (5-7). These oxidative lesions are effectively
but not perfectly repaired; the normal steady-state
level of oxidative DNA lesions is about 10 per cell in
the young rat and about twice this in the old rat (6,8).
Oxidants are produced as byproducts of mitochondrial
electron transport, various oxygen-utilizing enzyme
system, peroxisomes, and other processes associated
with normal aerobic metabolism, as well as by lipid
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FIGURE 1. Mitogenesis (induced cell division) is a major multiplier of
endogenous (or exogenous) DNA damage leading to mutation.
The pathway to inactivating (x) both copies of a recessive tumor-
suppressor gene is shown (two vertical lines represent the pair of
chromosomes carrying the genes). Cell division increases mutage-
nesis due to DNA adducts converted to mutations before they are
repaired (1 and 2a); mutations due to DNA replication (1 and 2a);
replicating DNA is more vulnerable to damage (1 and 2a). Mitotic
recombination (2a), gene conversion (2a), and nondisjunction (2b)
are more frequent, and the first two give rise to the same muta-
tions on both chromosomes. This diagram does not attempt to deal
with the complex mutational pathway to tumors (164,165).

peroxidation. Oxidants that escape the numerous
antioxidant defenses can damage cellular macromole-
cules, including DNA, and such damage can lead to
mutations and cancer.

We have argued that this oxidative DNA damage is
a major contributor to aging and the degenerative dis-
eases associated with aging (4,9). Because of the high
background of endogenous DNA lesions, any agent
causing chronic mitogenesis can be indirectly muta-
genic, and consequently carcinogenic, by increasing the
probability of these endogenous DNA lesions being
converted to mutations (Fig. 1). Furthermore, endoge-
nous rates of DNA damage are so high that at low
doses that do not increase mitogenesis, it may be diffi-
cult for exogenous mutagens to make a significant
increment in the total DNA damage. Dietary micronu-
trients, e.g., antioxidants, are necessary for cellular
defense systems; deficiency of micronutrients can alter
the balance between damage and defense and thus can
increase DNA lesion rates. Oxidants are also impor-
tant in mitogenesis (wound healing) and progression
(see below).

Mitogenesis Increases Mutagenesis

When the cell divides, an unrepaired DNA lesion has
a certain probability of giving rise to a mutation. Thus,
an important factor in the mutagenic effect of an
exogenous agent, whether it is genotoxic or nongeno-
toxic, is the increment it causes over the background
cell division rate (mitogenesis) (10). There is little can-
cer from nondividing cells. The time interval for DNA
repair during cell division is short, and lesions can be
converted to point mutations or gaps during replica-
tion. In support of higher “spontaneous” mutation
rates in dividing cells is the observation that back-
ground hypoxanthine phosphoribosyltransferase muta-
tions that arise in vivo in human T-lymphocytes arise
preferentially in dividing T-cells (11-14).

During cell division, single-stranded DNA is without
base-pairing, nucleosomes, or histones and is thus
more sensitive to damage than double-stranded DNA.
Cell division triggers mitotic recombination, gene con-
version, and nondisjunction, which together seem more
effective than an independent second mutation (15-19)
in converting a heterozygous recessive gene (e.g., p53,
a tumor-suppressor gene) to homo- or hemizygosity.
Thus, the second mutational step toward cancer is
more dependent on mitogenesis than the first. Hetero-
zygotes at the human HLA-A gene are spontaneously
converted to homozygotes during cell division (20). The
above mechanisms could account for gross chromoso-
mal alterations that occur frequently in human tumors
(21-27). Cell division allows gene duplication, which
can increase expression of oncogenes that are other-
wise weakly expressed (28).

Cell division (i.e., through mitotic recombination)
and DNA damage (29) would be expected to increase
the rate of loss of 5-methylcytosine. Epigenetic changes
in DNA, such as 5-methylcytosine levels, appear to be
important in turning off genes in differentiation and
could play a role in both cancer (30-84) and aging
(81,35). It has been observed that the 5-methylcytosine
level decreases with age (36), and it is known that cells
dedifferentiate with age (37,38).

Those cells that appear to be most important for
cancer are the stem cells, which are not on their way
to being discarded. Increasing the division rate of
stem cells increases mutation and therefore cancer. In
dividing cells such as in epithelial tissues, one impor-
tant unknown factor is to what extent there is a queue
of reserve stem cells to replace stem cells that are
programmed to die (apoptosis) after a certain number
of divisions. A recent study on transformation of ovar-
ian cells examined various factors and emphasized the
role of cell division (39). Thus, understanding cell divi-
sion rates, apoptosis, cell lineages, and differentiation
are all relevant to mutagenesis and carcinogenesis
(40). Endogenous cell division rates can be influenced
by hormone levels, decreased by calorie restriction, or
increased by high doses of chemicals. If the rates of
both DNA lesions and cell division are increased,
there will be a multiplicative effect on mutagenesis
(and carcinogenesis), for example, by high doses of a
mutagen that also increase mitogenesis through cell
killing.

Mitogenesis and Carcinogenesis

Epidemiological studies, a large body of experimen-
tal evidence, and theoretical work on the mechanisms
of carcinogenesis point to mitogenesis as a major con-
tributor to cancer.

Suppression of Intercellular Communication
Causes Mitogenesis. At near-toxic doses, some chem-
icals interfere with cell-cell communication in quies-
cent tissues (e.g., the liver, the major target site for
carcinogenesis in rodents), thereby causing mito-
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genesis and carcinogenesis (41-43). Trosko and his
associates (41,42) have shown that suppression of gap
junctional intercellular communication, which is associ-
ated with an increase in Ha-ras expression in contact-
inhibited cells, leads to mitogenesis (44). It is of great
interest to identify chemicals causing mitogenesis at
doses much below the maximum tolerated dose [e.g.,
certain peroxisome proliferators (45)].

Mitogenesis from Exogenous and Endogenous
Factors. Chronic toxicity can cause injury to tissues,
resulting in replacement cell division (46-50). In an
experimental cancer model, the surgical removal of
part of the liver causes neighboring cells to proliferate
(46-48). The incidence of liver cancer is low in humans
(but not in some strains of mice) unless the liver is
chronically damaged. Viruses or alcohol excess, for
example, cause damage to the liver, which is a risk fac-
tor for cancer. Salt excess is a risk factor in human
stomach cancer because it causes mitogenesis (51-58).
Chronic toxicity can also cause an inflammatory reaction
because phagocytic cells unleash a barrage of oxidants
in destroying dead cells at a wound. The oxidants pro-
duced are in part the same as those produced by ioniz-
ing radiation; therefore, chronic inflammation may be
equivalent to irradiating the tissue (59). Nitrogen
oxides from inflammation are also mutagens. The oxi-
dants produced as a result of inflammation can stimu-
late proto-oncogenes and cell division (60-63). Chronic
irritation and inflammation cause cancer in animals
(64). Chronic inflammation is, as expected, a risk factor
for human cancer (65-67); the carcinogenic effect of
ashestos (68) and cigarette smoke, for example, may be
due primarily to inflammation, which increases both
mitogenesis and mutagenesis.

Chronic infection from viruses, bacteria, schisto-
somes, and other organisms that cause cell killing and
consequent mitogenesis can be risk factors for cancer.
Two examples are the human virus hepatitis B, a major
cause of liver cancer in the world (69,70), and human
papilloma virus 16, a risk factor for cervical cancer and
one of whose major effects is to increase mitogenesis
(71). In transgenic mice, overproduction of one protein
of the hepatitis B virus, a surface antigen, results in cell
turnover that causes all of the mice to develop hepato-
cellular carcinomas (72). Human T-cell lymphotropic
virus type 1 causes constitutive expression of the T-cell
interleukin-2 receptor. This may commit the cell to
unremitting in vivo cell division with an increased like-
lihood for the occurrence of critical mutations leading to
T-cell leukemia/lymphoma (78,74). Chronic Helicobacter
(Campylobacter) infection is a risk factor for stomach
cancer (75,78). Chronic schistosome infection is a risk
factor for bladder and colorectal cancer (79). Dietary
antioxidants would be expected to decrease both'the
mutagenic and proliferative effects of oxidants and
therefore to lower tumor incidence.

Hormones can also cause mitogenesis, and hormone
imbalances are major risk factors for a number of
human cancers [e.g., breast cancer (80,82)]. Thus,

agents causing chronic mitogenesis can be proper car-
cinogens and are important in human cancer (80,82).

A calorie-restricted diet, compared to an ad libitum
diet, significantly increases the life span of rats and
mice and markedly decreases the cancer rate. It is
striking that in calorie-restricted animals, mitogenesis
rates are markedly lowered in a variety of tissues
(83,84): this could in principle account for much of the
decrease in the cancer rate (see below).

Thinking of chemicals as “initiators” or “promoters”
confuses mechanistic issues of carcinogenesis (85). The
idea that promoters are not in themselves carcinogens
is not credible on mechanistic grounds and is not cor-
rect on experimental grounds (85-87). Every classical
promoter that has been tested in a high-dose cancer
test is a carcinogen (e.g., phenobarbital, catechol, TPA
(88,89). A promoter has been viewed as an agent that
facilitates the development of tumors by selected
growth of an initiated cell; however, a promoter can be
viewed more accurately as inducing cell division and
thus stimulating the rate of accumulation of key muta-
tions that are needed to acquire a transformed pheno-
type. Thus, the very word promoter is confusing
because mitogenesis is caused by one dose of a chemi-
cal and not by a lower dose. Nongenotoxic agents such
as saccharin can be carcinogens at high doses just by
causing cell killing and inducing chronic mitogenesis
and inflammation, and the dose response would be
expected to show a threshold (86,90-92).

Chronic mitogenesis alone can be a risk factor for
cancer: theory predicts this and a large literature sup-
ports it (79,86). Work on radiation has also supported
the idea that both mutagenesis and mitogenesis are
important in tumor induction (93-96).

DNA Repair and Other Inducible
Defenses

A variety of DNA repair defense systems, almost all
inducible, protect the cell against any increment in
DNA lesions by both exogenous and endogenous muta-
gens (97). The defense systems against reactive elec-
trophilic mutagens, such as the glutathione transferas-
es, are also almost all inducible and buffer cells against
increases in active forms of chemicals that can cause
DNA lesions (98,99). Therefore, the effect of a particu-
lar chemical insult is dependent on the level of each
defense, which in turn is dependent on the past history
of exposure. Thus, a small dose of a mutagen can pro-
tect against a subsequent challenge from a large dose,
as has been shown for radiation (700) and a variety of
other mutagens. )

Different adducts are repaired with different effec-
tiveness. Oxidative lesions, being so common in all aer-
obic creatures, may be particularly well repaired.
However, even though radiation is an oxidative muta-
gen, it still can add to the background of DNA lesions
to give increased mutation and cancer. Exogenous
agents can influence the induction and effectiveness of
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these defenses. Defenses can be partially disabled by
lack of particular micronutrients in the diet [e.g.,
antioxidants (101)].

Mitogenesis and Animal Cancer
Tests

Animal cancer tests are conducted at the maximum
tolerated dose (MTD) and 1/2 the MTD of the test
chemical for long periods of time—both high doses that
can cause chronic mitogenesis (86,90,102). Future
experimental work measuring mitogenesis will show
how often chronic dosing at the MTD is like chronic
wounding, which is known to increase tumor yields in
rodent tests and to be a risk factor for cancer in
humans (108). Our theoretical arguments (87,104,105)
for taking mitogenesis into account in animal cancer
tests help to explain many of the results that have been
found in analyzing these tests, as discussed below.

To the extent that increases in tumor incidence in

rodent studies are due to the secondary effects of

administering high doses, then any chemical that
increases mitogenesis (e.g., by chronic cell killing and
cell replacement or by suppression of intercellular
communication) may be a rodent carcinogen; thus, one
would expect that a high proportion of chemicals test-
ed at the MTD would be positive, and this is indeed
what is found. In our large Carcinogenic Potency
Database (CPDB), approximately half of the chemicals
are positive in at least one test, and this proportion is
similar for a variety of subsets of the CPDB (106-110).
It is unlikely that the high proportion of carcinogens in
rodent studies is due simply to selection of suspicious
chemical structures because most chemicals were
selected because of their use as industrial compounds,
pesticides, drugs, or food additives. Moreover, histori-
cally, our knowledge to predict carcinogenicity has
been inadequate (104).

Because mitogenesis indirectly increases mutation,
one would expect that in animal tests at the MTD,
nongenotoxic carcinogens are likely to be acting by
this mechanism (86). Indeed, among chemicals in the
CPDB that have been tested adequately in rats and
mice, we find that half of the nonmutagens in Salmonello
are carcinogens, and approximately 45% of the carcino-
gens are not mutagenic (110).

Mitogenesis at the MTD is an important, and possibly
the dominant, factor in carcinogenesis for mutagens.
Mutagenic chemicals, because they directly damage
DNA, are generally more effective at killing cells at
high doses (with consequent cell replacement) than
nonmutagens and thus are more effective at causing
mitogenesis. Mutagens, unlike nonmutagens, can dam-
age DNA as well as increase mitogenesis at high doses,
giving a multiplicative interaction for carcinogenesis.
This would lead one to expect three results that are,
in fact, found in analyses of animal cancer tests:
Mutagens, compared to nonmutagens, are a) more like-
ly to be carcinogenic (104,111 ,112), b) more likely to be

positive in both rats and mice (104,111,112), and
¢) more likely to induce tumors in multiple organs (112).

One would not expect the mutagenicity of a chemical
in Salmonella to always indicate the mechanism in a
rodent. In the CPDB, of 384 chemicals tested for both
carcinogenicity in rats and mice and mutagenicity in
Salmonella, 26% of the nonearcinogens are mutagens in
Salmonella; these presumably are not acting as signifi-
cant mutagens in the rodents (110). Additionally, some
nonmutagens in Salmonella may be indirectly muta-
genic in higher organisms, for example, peroxisome pro-
liferators. Even those mutagens that are carcinogens
may not all be acting as genotoxins in animals because
of detoxification and other processes. The importance of
mitogenesis, even for mutagens, has been shown in
experiments with pairs of mutagenic isomers (1 versus
2-nitropropane and 2,4, versus 2,6-diaminotoluene). In
each pair only one chemical was a carcinogen, and only
the carcinogen was mitogenic (113,114).

Several recent analyses of dose response in animal
tests are consistent with the idea that mitogenesis
from cell killing and cell replacement at the high doses
tested is important. In the usual experimental design
of dosing at the MTD and 1/2 MTD, both dose levels
are high and may result in mitogenesis. Even at these
two high doses, we have found that 44% of the positive
sites in National Toxicology Program bioassays are
statistically significant at the MTD but not at 1/2 MTD
(among 365 positive sites). Moreover, the proportion
positive only at the high dose is similar for mutagens
and nonmutagens (Gold et al., unpublished data).
Another analysis of the shape of dose response curves
indicates that a quadratic dose response is compatible
with more of the data than a linear one for both muta-
gens and nonmutagens (115). That mitogenesis at near-
toxic doses is important in the carcinogenic response at
the MTD is also suggested by the lack of chemicals
that are highly carcinogenic relative to their MTD.
Such chemicals would be expected to produce very
high tumor incidence rates at the MTD; however, in
animal cancer tests at the MTD it is uncommon to find
100% of the animals developing tumors (102). Moreover,
if chemicals were highly carcinogenic relative to their
MTD, then the dose-response curve might plateau well
below the MTD. However, we found that only 10% of
the dose-response functions indicate a possible plateau
(a leveling off of the dose response). Moreover, even
for these 10% there was a lack of consistency: for the
compounds in which an apparent plateau was observed
in one site, the result was generally not replicated in
other target sites in the same experiment, in other sex
of the same species, or in other species (102).

In this paper, we have mainly discussed theoretical
issues. The pioneering work on this subject by experi-
mentalists is discussed in detail in other pages in this
issue.

It is clear that the mechanisms of action for all
rodent carcinogens are not the same. For some chemi-
cals there is evidence to support mitogenesis effects



DNA LESIONS AND CELL DIVISION 39

unique to high doses, for example, formaldehyde,
melamine, and saccharin. For others (e.g., butadiene),
carcinogenic effects have been found considerably
below the MTD. Further studies of mechanism in
rodent bioassays should help to clarify such differ-
ences. Adding routine measurements of mitogenesis to
the 13-week toxicology study and the 2-year bioassay
would provide information that would improve dose
setting, interpretation of experimental results, and
risk assessment.

As currently conducted, standard rodent bioassays
do not provide sufficient information to assess carcino-
genic risk to humans at doses thousands of times below
the MTD. If mitogenesis is a dominant factor in car-
cinogenesis at the MTD, then at low doses where mito-
genesis is not generally induced, the hazards to
humans of rodent carcinogens may be much lower than
commonly assumed. Defenses are inducible at low
doses, and even for mutagens the increment in DNA
damage over the enormous rate of endogenous back-
ground damage may not be significant.

Toxicological examination of synthetic chemicals such
as pesticides and industrial pollutants, without similar
examination of chemicals that occur naturally, has
resulted in an imbalance in both data and perception
about chemical carcinogens. About 80% of the chemi-
cals tested in both rats and mice are synthetic. Yet,
there is an enormous background of natural chemicals
in the diet such as plant pesticides and the products of
cooking that have not been a focus of carcinogenicity
testing (105). Regulatory policy to prevent human can-
cer has primarily addressed synthetic chemicals, yet
similar proportions of natural chemicals and synthetic
chemicals test positive in rodent studies, as expected
from an understanding of toxicological defenses (116).
The vast proportion of human exposures are to natural
chemicals [e.g., 99.99% by weight of pesticides humans
ingest are natural (105)]. Thus, rodent carcinogens that
humans are exposed to are ubiquitous (105,117).
Natural chemicals are the experimental control for
evaluating cancer-regulatory strategies for synthetic
pollutants. Possible hazards from residues of synthetic
chemicals should be routinely compared to the possible
hazards from natural chemicals. We have found that
when the same index is used for natural and synthetic
chemicals, possible carcinogenic hazards from current
levels of pesticide residues or water pollution are likely
to be of minimal concern relative to the background
levels of natural substances (117,118). Extrapolation to
low dose human exposure from results of animal cancer
tests done at high dose should be based on knowledge
about mechanisms of carcinogenesis for each chemical,
particularly mitogenic effects that are present at high
but not at low doses.

Progression and Clonal Instability

One of the hallmarks of latter stages of cancer is a
genetic instability that leads through a succession of

_ stages (“progression”) to a metastasizing, aggressive

tumor (119). Numerous authors have discussed progres-
sion in terms of a possible clonal instability (119-121).
Because there is a balance between a high endogenous
oxidant production and extensive oxidative defenses, a
plausible way to get a clone with a high mutation rate
is to upset this balance. Because oxidants are both
mitogens [the wound healing response (122-124)] and
mutagens, they furnish the selective growth and insta-
bility needed for progression to a malignant tumor.
Recent work supports this idea: tumor cell lines from
various organs produce excess H,0, (125); breast
tumors show high levels of oxidative DNA damage
(126), and a number of tumors have altered antioxidant
defenses (127-1883). There is a large literature on
antioxidants as anticarcinogens (184,135). Antioxidants
have been shown to be effective in suppressing all
stages of carcinogenesis (135,136).

Factors Decreasing Mitogenesis,
Mutagenesis, Carcinogenesis

Dietary Imbalances and Degenerative Diseases.
The high endogenous level of oxidative DNA lesions
reinforces evidence from epidemiology that deficiency
of antioxidants (187-139) is likely to be an important
risk factor for cancer. Epidemiologists have been
accumulating evidence that unbalanced diets are major
contributors to heart disease and cancer and are likely
to be as important as smoking. It has been estimated
that approximately 80% of all cancers are related to
diet (140). The main culprit appears to be a dietary
imbalance of too few fruits and vegetables and too
much fat (187-139). Particular micronutrients in fruits
and vegetables that appear to be important in disease
prevention are antioxidants (carotenoids, tocopherols,
ascorbate) and folic acid, but many more vitamins and
essential minerals may also be of interest (187-139,
141). Micronutrients are components of defenses
against oxidants and other endogenous mutagens that
contribute to the degenerative diseases associated
with aging, such as cancer, heart disease, and cata-
racts. Because endogenous oxidative DNA damage is
enormous, there are good theoretical reasons for
thinking that antioxidants should be as important as
they are being found to be. Surveys have indicated
that 91% of the U.S. population is not eating sufficient
fruits and vegetables; for example, almost half the
population had eaten neither fruits nor vegetables on
the day of the survey (142).

A study of sperm DNA (101) indicates that levels of
oxidative DNA damage are inversely correlated with
ascorbate concentrations in seminal fluid which, in
turn, are related to the amount of dietary ascorbate
consumed. In 10 individuals whose dietary intake of
ascorbate was started at 250 mg/day for 2 weeks and
then reduced to 10 or 20 mg/day, the level of ascorbate
in seminal fluid fell to one-fourth, and the levels of
oxidative lesions in sperm DNA were increased 2.5
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times; repletion of dietary ascorbate led to a decrease
in lesion levels closer to those before ascorbate depri-
vation. In a separate group consisting of 24 free-living
subjects, the steady-state levels of lesions were also
found to correlate inversely with content of ascorbate
in seminal plasma. These results demonstrate the pro-
tective effect of dietary ascorbate against oxidative
damage to human sperm DNA. This protective effect
may be especially relevant to about one third of the
male population who have low ascorbate levels because
of poor diets or smoking (189,143,144). Their progeny
may be at a higher risk for birth defects and childhood
cancer. It seems likely that the men’s somatic cells are
being mutated as well as their sperm.

Work showing that folate deficiency in mice results
in chromosome breakage (145) reinforces studies indi-
cating that folate deficiency is an important cause of
chromosome breaks, cancer, and birth defects (137,138).
Again, a sizeable proportion of the population (30% or
more) may not be ingesting sufficient folate. Hypo-
methylation of DNA, which is associated with folate
deficiency, might also contribute to epigenetic effects,
such as dedifferentiation of cells, which occurs during
tumorigenesis (146,147).

In the quest to delay aging and prevent cancer and
heart disease, it is important to understand what level
of each micronutrient is optimal for long-term effects.
The RDA (U.S. Recommended Daily Allowance) for
micronutrients is based on the level necessary to pre-
vent an immediate pathological effect, but the optimal
levels that maybe needed to suppress tumor formation
are likely to be much higher. The great genetic vari-
ability of the human species makes it likely that the
optimal RDA for particular micronutrients will be
higher than average for many people. Techniques for
noninvasive measurement of DNA damage in humans
are clearly relevant (148,149).

Calorie Restriction Lowers Mitogenesis Rates.
In rodents, a high-calorie diet appears to be carcino-
genic (150-152). A calorie-restricted diet, compared to
an ad libitum diet, significantly increases the life span
of rats and mice and dramatically decreases the cancer
rate. Though a causative mechanism to account for the
beneficial effects of calorie restriction has not been
established, several physiological indexes are altered
in rodents that are fed restricted diets. Calorie restric-
tion activates the pituitary adrenocorticotropic axis,
resulting in a decrease in the release of reproductive
and mitogenic hormones. It has been suggested that
Darwinian fitness will be increased if reproductive
function is delayed during periods of low food availabil-
ity (158) and that the saved resources will be invested
in maintaining the body until food resources are avail-
able for successful reproduction (154). If one accepts
the concept of a trade-off between reproduction and
maintenance as predicted by evolutionary biology
(155), it becomes evident why calorie restriction is so
effective in reducing cancer. Decreases in mitogenic
hormones such as insulin, thyroid-stimulating hor-

‘mone, growth -hormone, -estrogen, and prolactin
decrease the likelihood of hormone-induced cancers, as
has been shown in various animal studies (156). The
markedly lowered mitogenesis rates observed in a
variety of tissues of calorie-restricted relative to ad
libitum rodents (83,84) is consistent with suppression
of mitogenic hormones (157) and decreased protoonco-
gene expression (158). The lowered incidence of mam-
mary tumors observed in calorie-restricted rats has
been attributed to reduced circulating levels of the
mammotropic hormones estrogen and prolactin (159).
Thus, the decrease in mitogenesis rates in calorie-
restricted rats is likely to account for much of the
decrease in tumor incidence.

The suggestion that maintenance functions are
enhanced in calorie-restricted rats is supported by the
findings of more efficient DNA repair (160), better
coupled mitochondrial respiration (161), and a delay in
the age-dependent decline of antioxidant defenses
(162). The overall effect of these enhanced mainte-
nance activities would be a reduction in oxidative dam-
age to cellular macromolecules, and a decrease in
somatic mutations that are induced by endogenous
oxidative mutagens. The higher levels of antioxidant
defenses in calorie-restricted rodents could account for
an enhanced immune response (163) that sometimes
suppresses tumor formation.
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